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The Garbl ing Dec is ion Make r : A Model of Bounded Ra tionality

Team theory was developed to model organizations. However ,

certain problenB occur if the theory is applied to the organization

designer ’s problem. It has been demonstrated that increasing

information to the agents in a team can only increase the payoff to

the team; hence the optimal organization is one where everyone knows

everything. This result may be tempered by adding a cost of

organization to the team payoff. If the team payoff is augmented

by a cost of organization , then the result that the optimal

organization is one in which everyone kn ows everything no longer

obtains .

St ill , even with this augmented performance index , team

theory does not appear to give a realistic model of the organization

designer ’s problem. Team theory traditionally assumes that the

decision maker is capable of any manipulation , no matter how

complex , on the information that he uses to reach his decision .

This ability is not evident in real—life; indeed a very real

constraint in the design of organiza~~ ns is the capability of the

agents to process the information given to them . This inability

to perfectly process all information received is termed “bounded

rationality ” . The term implies that the decision maker behaves

rationally but is only capable of a certain amount of manipulation.

In this paper , a general model is presented for a team with

boundedly rational decision makers. The decision maker is modelled

as one that makes the correct decision , but garbles that decision

at a rate dependent on the amount of information he processes.
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2.

A Linear—Quadratic—Gaussian model is presented based on this

general model. A result is demonstrated which shows that

no descr iptive gain is ob tained by us ing this model of the

decision maker , when a quadratic payoff is used. Finally ,

the model of the decision maker is applied to a problem in

returns to scale under uncertainty. The usual model of infor-

mational cost yields increasing returns to scale when infor—

mation is used; the model with the garbling decision maker

yields constant returns to scale.

1. General Model

The general model of the problem of finding the optimal

organization can be formulated as finding the highest mean

reward over possible organizations and decision rules:

max E R(x ,y) — cost of organization
organizations

decision rules

x are input symbols available to the organization

are output symbols (controls) produced by the

organization

R(,) is the reward function -- the reward given to
organization when it yields the second argument
when the first argument is available

the expectation is taken over the input symbols whose
probability distribution is assumed.

The organization produces output symbols from input

symbols by employ ing agents who read input or intermed ia te

signals and produce intermediate or output signals. The

~~~~~~~~~~~ _ j1_ _ _ __
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3.

decision rules are simply the transformation rules employed

by the agents. The organization is specified by which signals

are read and written by which agents. This model of the

organization is essentially the team theoretic formulation of

the decision problem. The main difference in this model is

the model of the boundedly rational decison maker.

The decision maker may be told that the optimal rule is to

map x
j into ~k’ 

but he will tend to make errors and the trans-

formation implemented will actually map X
j 

into with a

certain probability P(Yk/xj) and map X
j 

into other symbols

with probability 1 — p (y
k
/x .). The probability that the correct

transformation is made— P(Yk
/x j

)__ is denoted accuracy and is

inversely related to the complexity of the input symbols used

to make the decision. Complexity is a purposefully vague

term which is supposed to measure the informational load placed

on one agent by the input signal read by that agent. The

complexity function is sometimes denoted Co and may be taken

to be the Shannon informational entropy of the input signal.

The cost of the organization noted above may be taken to

be the costs of the agents (salaries &c.) and the costs of the

communications involved.

It is assumed that the input symbols and outputs symbols

are multidimensional so that agents may read or write only

parts of the symbols. Thus a component of the x given to the

organization may correspond to a specific output——say a mar—

keting decision on a certain product.

~
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4.

Remarks on the model

The model of the organization is essentially that of

R. R. Drenick (1976). The model presented above differs

from Drenick’s in the following ways:

1) The problem of satisfying a constraint on the mean time
to complete tasks is ignored;

2) The dependence on psychological factors of agent perfor-
mance is ignored;

3) The nature of the input/output symbols have explicitly
been made multidimensional so that the study of coordi-
nation versus informational overload can be more easily
accomplished.

The specification of the input alphabets , output alphabets ,

the reward structur e, the sources and destinations of the

symbols (signals) and the rules of transformation comprise a

complete description of the organization. In the language of

nonclassical control , input symbols correspond to information ,

intermediate signals to communication among decision makers ,

output symbols to controls , reward function to payoff function ,

sources and destinations of symbols to information and commun-

ication patterns , and the rules of transformation correspond

to decision rules.

The key feature of this model is the complexity—accuracy

relation. This relation is intended to capture the concept of

rationality by making the decision maker less effective when

he is ovetloaded with information. Presumably, when the

decision maker is completely overloaded , he will act as a

random source , independent of the input given him , making him

useless to the organization. Another viewpoint , and one which

resolves a b it of ambiguity, is the follo~r[ng decomposition 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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of the boundedly rational decision maker into two parts.

The first part of the decision maker makes the team optimal

decision. The second part of the decision maker is a noisy

communication channel that takes the output of the first part

and garbles it to produce the actual output.

The problem , as formulated above , is , given the input

and output alp habets , the reward function and the characteristics

of the decision makers , design the organization so as to maximize

the mean reward. “Design the organization ” means to specif y

the communication links——information sets-—and the transformation

rules——strateg ies. One may also ask for the appropriate design

of the input and output alphabets; this question is equivalent

to designing the basic information sets and the coordinates of

the controls. By asking this latter question , one may gain

insight into the problem where fixed input and output alphabets

are given.

2. LQG Static Team Formulation

In this section the Linear—Quadratic—Gaussian Static

Team formulation is explored. The assumptions that the informa-

tion is a linear function of the underlying random state that

has a gaussian distribution and that the payoff function is

quadratic characgerize this formulation. Also , the static

nature of the inforinatiou sets implies that there is no communic—

ation or signalling between agents; the team assumption means

that all agents have the same objective function. This formu—

_ _  . .--— ~~~~~~~~ - --~~~~~~~~~ -‘ .~- -~~~~~~~- ---~~~~~~~~~~ -
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6.

lation is traditionally used in non—classical control theory as

a first step to understanding a particular problem; this is

the use that the formulation is put to here.

Formulation

The objective function is

E u’Qu + 2 u ’Sx (2.1)

u is the control vector.

Player i controls u1
.

Q is taken to be negative definite.

The random variables in the problem are (2.2)

x k—dimensional underly ing state ‘~ 
N(O ,tk

)

v rn—dimensional measurement noise , independent of x
‘~N(O ,I)

wi—dimensional inaccuracy noise , independent of x & v
‘~ N {O,Diag{ f1

(C(e
1
)), . . .

There are in pieces of information available:

z3 = h
3
x + V

j 
(2.3)

The control is given as a function of the decision maker ’s

information plus additive white noise corresponding to the

inaccuracy induced by the informational loading.

u =  (o ) + w
i I i I (2.4)

The notation for the individual information sets is de-

signed to allow completely arbitrary information structures.

denotes the number of informations read by the ith decision

maker. So the information set for the 1
th 

decision maker is

o
i 

= (Z
5U

~~
l)
,...,Z

8U
~~
n
I
))1 = H 1

x + E1v (2.5)

H
1

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2.6a)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _
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U If k = s (i ,j); 0 otherwise} (2.6b)

The definitions of H
1 

and E1 are mainly for calculatlonal

convenience and serve to emphasize the linearity of the resulting

information structure.

A few functions have been used in the above definitions

and are defined as follows:

) the optimal strategy fo~. the decision

maker as a function of his information set.

f1
( ) the accuracy—complexity relatio t h e  v a r i a n c e

of the noise added to the optimal team decision.

C( ) t h e  c o m p l e x i t y  of t h e  i n f o r m a t i o n  set——it is inde-

pendent of the realization of the information

s e t .  I f Shannon  i n f o r m a t i o n a l  e n t r o p y  is used

the n c(O~ ) 
= 1/2 n 1 in 2i ~c + 1/2 in J H 111. ’ + 11

S e p a r a t i o n  R e s u l t

A s e p a r a t i o n  r e s u l t  is shown which  p e r m i t s  easy c a l c u l a t i o n

of the  o p t i m a l  s t r a t e g i e s  and c o s t s  f o r  a g iven i n f o r m a t i o n

structure.

P r o p o s i t i o n .  The o p t i m a l  s t r a t e g i e s  y~ f o r  t h e  t eam p r o b l e m

as s t a t e d  above can be c o m p u t e d  as i f  w E O .  F u r t h e r m o r e ,

the optimal payoff is the sum of the usual team payoff

(w~- O )  and t h e  w e i g h t e d  sum of t h e  f 1 { C ( 8 1
) }

P r o o f . L e t  T = (y~~(9~~),. .. ,y~ (A
t
) ) ’ . T h e n  s u b s t i t u t i n g  the  c o n t —

t r o l l e r  d e f i n i t i o n  ( 3 . 4 )  i n t o  t h e  p a y o f f  ( 3 . 1)  y i e l d s :

max E((r + w)’Q (  r ÷ w)  + 2 (  r + w ) ’ S x)

I 
_ _ _  

-
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8.

Rewriting this payoff using the zero mean and Independence

properties of w yields

m~ x E {r ’Qr + 2r ’Sx} + Ew ’Qw}
r

But the expectation Involving the term in braces is simply

the usual team payoff (w~0), Ew ’Qw Is independent of r

and is equal to E fjq~~.~f1 C(Oi)} 
qed

Remarks.

First note that the properties of linear Information and

gaussian distribution were not used in the proof. Only the

properties that the inaccuracy noise was independent of the

control (state variables) and additive , and that the payoff

was quadratic , were used.

Secondly note that this result allows easy calculation

of the optimal decisions. One may use the usual team decision

rules that have been well developed.

Thirdly note that this result implies that no descriptive

gain has been made by considering the use of a garbling decision

maker in the context of the quadratic payoff. Since the f1 
and

C( ) functions are arbitrary, the total team payoff may be

wr itten as

E(u ’Qu + 2 u ’Sx) + cost of organization.

This payoff is the usual payoff given in team theory for

the design of organizations. This formulation does have the

advantage of giving another interpretation to the additive cost

— - -~~~ -~~~~~~~~~ -—~~~~~~~~~~~~~~~~ ~~ -. -~~~~~~~~~~~~~
, -~~—- -~~~~~ - ~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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9.

of organization in the quadratic payoff context: cost of infor-

mational loading. In this context another interpretation can

be given to the organization designer ’s problem. When he considers

increasing infrrmation to agents in the organization , he must

balance the effect of increasing the team payoff by adding

information versus the effect of decreasing the team payoff by

adding to the costs of infor~ mtional loading. The fact that

the increased cost due to informational loading reduces to the

usual additive cost is disappointing because it does not change

the mathematical form of the designer ’s problem. This reduction

to the usual form may be viewed as a degeneracy and may be taken

as another argument against the use of quadratic payoff functions.

This reduction does not appear in all cases; a useful example

is given in the next section.

3. An A pp lication to Informational Economies of Scale

Wilson (1975) has considered the problem of informational

economies of scale. He has shown that certain constant returns

to scale uncertain production functions exhibit increasing

returns to scale in information. He has shown that a firm

operating with one of these technologies will desire to produce

at infinite scale even if the firm is risk averse. By app lying

the model of the garbling decision maker and the separation

result to one of Wilson ’s models , it can be demonstrated that

constant returns to scale in information is obtained. As a

direct consequence , the firm experiences decl~~ning utility in

—- - .- - . -.--,--- - . — -—-— - - -

~
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10.

scale if it is risk averse.

Wilson considers the stochastic technology

2 (3.1)y =ER(l - (a - 0) )
where R is the scale
a is the firms decision for process parameter
0 is the state ..f nature.

Wilson then argues that the organization desi gner ’s problem
q

may be written as the cost of organization p lus the usual

payoff:

max ER( 1 — (a(z) — 0)
2
) — c(z)) (3.2)

where c(z) is the cost of information structure
z is the information structure.

Wilson then argues that there are increasing returns to scale

in information. The argument is essentially that the benefits

of Information are multiplied by the scale R , hut that the cost

of information is the same regardless of scale. Hence , the

firm will wish to produce at infinite scale. He shows that

the same result ap~ilies if the firm is risk averse.

If instead of this cost of information model , one uses

a garbling decision maker , the following results obtain. The

organization designer ’s problem is

max ER(1 — (a(z) + w (C(z)) 0)
2
) (3 3)

where w is the garb linr~ noise and has
variance f(C(z)), where C(z) measures
the complexity of the information structure.

Note that by applying the separation result , or by strai ght-

forward manipulation , the designer ’s problem becomes

m ax ER[l  - (a (z) - 0)2 - f(C (z))1. (3.4)

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ --~~ -~~-



Now informationzl economies of scale are constant since R multi-

plies both the cost and benefit of information. Of course , If

the firm is risk averse , there will eventually be decreasing

utility to scale and there may exist an optimal scale.

Note again that these results apply quite generally;

recall that the proof of the separation theorem , and hence the

proof of constant returns to scale in information , depend only

on the payoff structure and the independence of the garbling

noise with respect to other random variables In the problem.

4. Conclusion

A reasonable and plausible model for the boundedly rational

decison maker has been p esented. The decision maker reacts

to Increasing informational load by garbling his optimal deci-

sion. In the quadratic case , this garbling appears as an additive

organizational cost. The implication of this cost is two—fold.

First , another interpretation can be given to the additive organ-

izational cost: informational loading on the decision makers.

Second , the mathematical form of the organization desi gner ’s

problem remains the same ; there are no new conclusions that

this formulation yields over the usual formulation for the

quadratic payoff. A problem has been presented where the form

is changed and a new conclusion obtains. Where a traditional

formulation leads to increasing informational economies of

scale; this formulation leads to constant economies of scale ,

a much more p lausible outcome.
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